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TO THE PROBLEM OF THE CONCENTRATION 

C STRESSES NEAR A CRACK* 

G.YA. PQPOV 

The three-dimensional problem of the theory of elasticity dealing with 
the concentration of stresses near plane cracks is used.to describe a 
novel approach to solving the problem. The proposed approach is based, 
unlike the traditional approach, on obtaining an expression for the 
stress field as simple as that for the displacements, but using new 
harmonic functions connected, in a prescribed manner, with the normally 
used harmonic functions of the displacement field. In the case of a 
plane plane crack the new representation for the stress field leads to 
three-dimensional integral equations of a single type and solvable 
separately, replacing the system of three integrodifferential equations 
of the traditional approach. Moreover, the simple integral equations 
obtained must be solved in a wider than usual class of functions, namely 
on the class of functions containing non-integrable singularities. All 
this leads to a significant simplification of the formula for the stress 
intensity coefficient. 

I. ~~~~~a~~ of the Freffte so%.dion of the l&m& equations, If we assume that Y= 
Z&4 where u(x, y, z) is the displacement vector with coordinates uj (zt Y, z, (i = 1, 2, 3) 
and G is the shear modulus, then we can represent the solution of the homogeneous Lame 
equations in the form /l/ 

u=$+xgrad$, (f.1) 

where 9 is a harmonic vector with coordinates qj(j = %,2,3) and % is a harmonic func- 
tion. Here the harmonic functions $j(j = 0,1, 2,3) are connected by the equation 

x&' = -div$, x = 3 - 4~ (1.2) 

where u is Poisson's ratio and a prime denotes a derivative with respect to X. 
In accordance with formula (1.1) and using the Hooke's law , we establish the following 

formulas for the stresses: 

A dot denotes differentiation with respect to y, and a comma denotes differentiation 
with respect to s. 

Let us introduce a new harmonic vector $* with coordinates q_+*,(j= %,2,3), defined 
by the formulas 

The harmonicity of the functions qj* (j = 1, 2, 3) follows from the harmonicity of *3 
(j = 0, 1, 2, 3). 

Using formulas (1.4) and taking Eqs.(1.2) into account, we establish that 

div zp * =: -+" (1.5) 

If the vector $* has been found, then relation (1.5) can be used as the equation for 
determining qO. Using the harmonic functions 91 (j = 1, 2, 3), we can express the stresses 
(1.3) by the formulas 
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which are as simple as those for the displacements (1.11. 

2. Reducing the pro&km of a crack in the plane GC = 0 to tm-dimensionnt integraZ 
equations. We shall assume that the crack occupies the region S, which may be multiply 
connected, in the plane x = 0, and the elastic unbounded medium with the constants u and 
G is arbitrarily loaded. We will assume that the stresses are caused by the loads in question 
and when there is no crack, have been found and are given by the formulas 

0% = stl(2, Y. 21, %sy = (3% (2, Y, 21, h = (Is (S> Y> s) @.*I 

We shall seek the stress distributi.on in an unbounded elastic medium containing the 
crack S, in the form of the sum of two terms 

0, = Ql i- %*, rxy = qe + &*' TX, = 93 -t 7x1* (2.2) 

Here an asterisk denotes the discontinuous displacements and stresses /2/ caused by the 
presence of the crack S. These must remove the stresses from the edges of the crack .Z =&O 
appearing there in accordance with formula (2.11, i.e. they must satisfy, at these edges, 
the following boundary conditions: 

2 = +-0, a,* = - 41 (09 Y, 4, %I!* = -qn (0, Y, 4, 2x,* = -43 (0, Y, 4, (2.3) 

Y,ZES 

We shall construct the discontinuous stress and displacement fields using formulas (1.6). 
Tn order to ensure the discontinuity, we must construct a discontinuous harmonic function 
* (% Y, 2) with the jumps 

It@ (0, y, z)l = 9 (-0, Y, 4 --$ (-I-% Y, 4 (2.4) 
[l/V (0, y, z)l = $' (-0, Y, 2) -$' (t-0, Y, 2) 

on S. We shall use the well-known scheme /2/, first introducing a double Fourier trans- 
formation in the variables y and z: 

cpp& (I) = f{ 9 (2, y, 2) e’BY+‘hzdydz 
-m 

Then, the double Fourier transform of the discontinuous harmonic function sought will 
be given by the formula 

Here [qBI (0)l,I~~r’(O)l axe the double Fourier transforms of the jumps (2.4). Inverting 
the resulting transform (2.51, we obtain the required discontinuous harmonic function with 
jumps (2.41, 

Let us take, as the functions lPlf (I> Yt 2) appearing in (2.21, the discontinuous 
harmonic functions determined by the formula (2.6), and let us realize the conditions (2.3). 
The latter conditions imply that the jumps in the values of the stresses durinq the passage 
across the surface S are zero, therefore according to (1.6) we have 

I*,* (0, Y, z)l = 0, i = 1, 2, 3 (2.7) 
Therefore by virtue of (2.6) the harmonic functions Op,* will be given by the formulas 

(2.8) 
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and from this it follows that the boundary conditions lead, according to (1.6), to the 
following integral equations for determining the unknown jumps [qr'(O, q, 5)): 

1 ss rsf’(o, ‘), 01 WC 
4n ~O(~~ z.9, 5) =--~~(O,Y,Z), j=1,2,3, y,z~S 

s 

Having found the jumps, we can determine the functions $j (5, Y, Z) (j = 1, 2, 3) using 
the formulas (2.8). 

In order to determine the stresses at any point of the unbounded elastic medium, we 
must also find, according to (1.6), the harmonic function $0 (G Y, z). We shall use the 
following scheme to achieve this. We can obtain the double Fourier transform $0 (G Y? z) 
using formula (2.5), i.e. 

$e%. (r) = I&h @)I q?. (4 + I$klsh. ml Q)Ph’ (4 (2.lO) 

but in this case we must find the jumps N&h m7 I4bfih (O)lY after connecting them with the 

jumps [&3). (O)l, [$jfi>. (011. 
From (2.7) we have 

b& (0)l = 0, j = 1, 2, 3 (2.11) 

Taking into account the harmonicity of the function qO, we can write formula (1.5) in 

or, after applying a double Fourier transformation in Y and 2, 

+:;;, - is&x - ihq&* = -(AZ + B') %Ra. 

Changing now to the jumps, we establish the relation 

Il&)'ogh (0)l y (h2 f B")_' {iB l&h (@I + ih h&h 01 - r&X (WI 

Let US differentiate relation (2.12) in X, and take into account the fact that the 

harmonicity implies $& = (A2 f p") $&.. Then 

[l&, (0)l = (h2 + fi")--' {i@ r& (0) + ih r& (O)l - h&3?” (O)lI 

(2.12) 

If we now take into account formula (2.11), we obtain the following expressions for the 
jumps: 

Let us substitute these expressions into formula (2.10) for the transform $0 (2, YV z). 
After inverting the transform with the help of a formula similar to (2.6), we arrive at the 
relation 

-44n$,(r*Y,z) =~SS[~~(O,tl,f)lL(s,y-~,z-~jdqd5+ (2.14) 

Thus if the integral Eqs.12.9) have been solved, the stress field in the elastic medium 
will be given by the formulas (1.6), (2.8) and (2.14). 

3. On the insufficiency of the solution of integral equation obtained in the class of 
integrable functions. Let us construct a solution of the integral Eq.(2.9) in the class of 
integrable functions for the case when S is a circle of radius a. We shall show that it is 
insufficient for the complete solution of the problem. Let us pass to the system of polar 
coordinates 

(3.1) 
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Then in place of (2.9) we 'shall have 

The above integral equation has several forms of solution in the class of integrable 
functions 1/3, 41 etc.). The solutions, however, appear to be unsuitable for achieving our 
purpose. We shall show for example, why the solution of Eq.(3.2) given in 121 is not suitable. 
The solution was obtained as follows. The formula 6.511(l) in 151 was used to show that the 
kernel of integral Eq.(3.2) can be expressed in terms of the Bessel function of zero order, 
and the addition formula 8.531(l) in /5/ in which 2 cos na, is replaced by @v + &kP, is 

used as this function. Subsequent application of the finite Fourier transformation given by 
the formulas 

(3.3) 

reduces the integral Eq.(3.2) to a sequence of one-dimensional integral equations for the 
Fourier transforms (after the substitution r = ax, p = a$): 

n=o, -&:,+2,... 

(3.4) 

The kernels of these equations are discontinuous Weber-Sonin integrals 

w?l (xv $1 = f J, (ztf I, (Et) dt (3.5) 
0 

for which we have the spectral relation A (5.2) of /2/. Using this relation and realizing 
the method of orthogonal polynomials, we obtain the solution of integral equations in the 
form /2/ 

’ 
Xlnk = - 

16nkP (n f 2k I ‘h) s gln("~)~R+lP;'-"'(l -2a=) dz 

ar’ (k + l/s) 1/1 
(3.7) 

0 
j = 1, 2, 3; n = 0, 1, . . .; k = 0, 1, . . . 

Here we have taken into account the fact that, irrespective of the loading of the elastic 
medium, we can establish a relation connecting g,,, and IFi.-n (in particular, for an even 
function gJ(r, a) we have, in the variables m) &, n = gj,-n)9 therefore we shall have to solve 
Eqs.(3.4) only for n > 0. 

Using the positive definiteness of the kernel we can show that solution (3.6), (3.7) of 
the integral Eq.(3.41 will be unique in the class of integrable functions. However, this 
solution (indicated by the superscript zero) does not lead to the solution of our problem. 
In order to confirm this we shall calculate the normal stress intensity coefficient NSIC 
o.% (0, r, rp). To do this, we shall need the values of these stresses at the continuation of the 
crack, i.e. when r>a. In accordance with formulas (1.61, 12.8) and (3.1) we have, for 
--a, (0, P, cp), an expression corresponding to the left-hand side of relation (3.2), for j = 1. 

Let us calculate the Fourier transform for the stress ~~(0, r, cp), 
carried out the same operation as when deriving Eq.(3.4). 

having previously 
We obtain 

The required NSIC is given by the formula 

N, (cp) = xli$+Ofa (X - 1) 0, (0, a.~ PI) (3.9) 
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According to the inversion formula the following relation holds for the finite Fourier 
transformation: 

therefore we have 

(3.10) 

In order to find the limit appearing here, we must use expression (3.9) for 
into which the solution (3.6) for j = 1 

%, (@ 
has been previously substituted. Using formula 

(1.7) of /6/ we have (x> 1) as a result; 

4no,,(as) = - u5-n-1S,n(Z), S,,(z) := 

r (n $ k + I/?) r (k 4~ l/z) F (n + k f ‘12, k + l/z; n + 2k -t 3/s; +) 

2k! r (n + 2k 4. s/z) r (- k C ‘/a) z WI 

(3.11) 

Continuing analytically the Gauss function appearing in (3.11) to the circumference 
z=l+O, we obtain, using formula 9.131(2) from /5/, 

r (n + k t ‘/a) r (k + ‘id 
I’ (-k + ‘/a) k! CI?+“*~ 

x 

([k! (n + k)!]-’ F (n + k + I/*> k + l/z; I/,; (9 - l)s-‘) - 1/z” - 1 z-l}X 
2[r(n + k + I/,) r(k+l/,)]-'F(k + 1, n + k + 1. n-t 2k + 3',;(x2- 1)x-' 

The above representation shows that the function u,,(ax) is bounded when 
and therefore we have N:"' = 0. 

.?+I$-0, 
Consequently the NSIC (3.9) is equal to zero under any 

loading of the elastic medium, which is absurd. We arrive at the same result when instead 
of the solution of integral Eq.(3.2) given in /2/ we use any other solution in the class of 
integrable functions. 

4. The construction of solutions of integral Eq.(3.4) in the class of non-integrable 
functions. In order to obtain a correct solution of the problem, we must expand the class 
of functions from which the solutions of integral Eq.(3.2) or Eq.(3.4) must be taken. Let 
first consider such an integral: 

I, (z, h) = s’ ““+fy-y dt , o,<x<,, n=O,l,... 
0 

where h is a complex number. Substituting into (4.1) the representation (3.5) for the 
Weber-Sonin integral and changing the order of integration, we obtain 

US 

(4.2) 

i.e. (4.1) is a Weber-Sonin integral with a discontinuity at the point + = 1. We find its 
value for x<l and r>i using formulas 6.574(l) and 6.574(3) from /5/. 

Let us continue the result obtained analytically to the value h = Vz. This 
the following values of the integrals, which should be regarded in the generalized 

1 En+lW ( 5) s n xl 
(1 pp 

dE = 
0 < .?J < 1 

- 0 2 > 1 

yields 
sense /7/: 

(4.3) 
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The upper relation of (4.3) enables us to construct the solution of integral Eg.(3.4) in 
the class of non-integrable functions in the form 

Xjn (a%) = Xjn’ Ca%) - Cjn%n (* - EY” 
where cj,, is an arbitrary constant. Substituting the solution obtained into (3.8) and 
taking into account the upper relation of (4.3) and (3.111, we obtain 

(4.4) 

We shall use the following arguments to fix the arbitrary constants C,,. Formula (4.4) 
determines the Fourier transform of the normal stresses at the boundary of the half-space 
which would form if the unbounded elastic medium were bisected by the plane 5 = 0. In the 
case of n = 0 (the axisymmetric case) oZo tr) will represent the normal stress along the 
above cut, and it will have to equilibrate the given load applied to the half-space shown, 
i.e. the resultant of these stresses or the integral 

must be finite, and for this we need 

ox, = 0 (Z-n--2--E), 2 -+ co, E > 0 (4.5) 

In order to realize this condition, we shall replace the Gauss function in the series 
appearing in (4.4) by its power representation, and transform the resulting double series 
to the form 

o Zk! (m - k)l r (- k $- 1/a) r (m + n + k -t_ a/,) 

We shall also assume that 

(4.7) 

Taking into account relations (4.6) and (4.7), we will establish that condition (4.5) 
will hold provided that we assume that 

&I = Xl?%0 (2n + q-1 (4% 

Let us calculate the NSIC (3.9). In order to use formula (3.10) we must find -V, 

and we do this by substituting the expression (4.4) into the second relation of (3.10). After 
carrying out the corresponding passage to the limit, we obtain 

A$$' = -(2n)_' Cl, (a/9"~ 

or, taking into account formulas (4.8) and (3.?), 

WV 

Formulas (3.10) and (4.9) then give the NSIC required. 
It is best to compare this result with the analogous result obtained by traditional 

methods. For example, the NSIC N,(@ is given, 
the error, i.e. replacing ,-W 

according to 121, (p-261) after correcting 
by s pw by the same formula (3.101, and unlike (4.9) it 

has the much more cumbersome form 
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from 
As a 

Here it was assumed that 42) (az) = -_g1, (az). 

We shall now show how to reduce this cumbersome formula to the form (4.9). 
Let us expand the given function g1, in a series in Jacobi polynomials: 

Using the orthogonalityof the Jacobi polynomials, we obtain 

Q,, 
glnk = Q,r;&. y- = 

k! r (n + k + l/s) r (n + 2k + ‘is) 
r (n + k + 1) I‘ (k + ‘id 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

NOW substituting (4.12) into (4.11), we obtain 

Carrying out the substitution 1 - 22% = t in the last integral, using formula 7.391(g) 
/5/ and substituting the result into (4.14), we reduce series (4.14) to a finite sum. 
result formula (4.10) will take the form A$")= z-'i/%&,. Taking into account the second 

relation of (4.13), we achieve complete agreement of the results. 

5. The stress intensity coefficient in the Kelvin problem when there is a disc-shaped 
crack. We shall discuss the results obtained in greater detail, applying them to the case 
of the loading of an unbounded medium with a concentrated force P (the Kelvin problem), 
parallel to the x axis and applied to the point with coordinates Z= E,y= O,Z= h. The circular 
crack of radius a is situated, as before, in the plane Z= 0. The distribution of the 
stresses 0, at i=o is given in the Kelvin problem by the formula /%/ 

0% (0. Y 1 2) = 
PE 

8n (1 - ~)[:a + ya + (z - h)2]a’z ’ 
1 - 2P + fa + y*y(z _ h)’ I= q1(09 Y,G 

Changing the variables (3.1) and passing to dimensionless coordinates r=az~=ab,h= 

ac. we obtain 

gl,(a=) = - 4na% 4-[CInl(b,c;~)-2~f~(b,c;r)] (5.1) 

(the prime denotes a derivative with respect to b). The last integral can be calculated as 
follows. We make the substitution coso= t and use the representation T,(t)= ~o~narwost for 
the Chebyshev polynomial. As a result we obtain 



Expanding the radical in the integrand in a Maclaurin series in y and 
remaining integrals with the help of formula 7.391(3) from 151, we obtain 

When determining 
%-, by virtue of 

The coefficients 
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evaluating the 

Next we expand the integral (5.6) in a power 

where we have 
equals to -1. 

The last 

Using in 
we obtain 

(5.2) 

the NSIC we should remember that in the present case 
(5.1), and therefore NY)= Nien). Formula (3.10) will tnen beCOme 

we have g,, fl = _. . 

N,(o)= NI")f2 5 Ny'cos "'p (5.3) 
n=r 

N%@') can be found, according to (4.9) and (5.11, from the formula 

(5.4) 

(5.5) 

bzh 

Pa + cc i- sw (5.61 
m=o 

(I),, (ml)-1 F (- m, il; 1 

series in c, using the representation 

em %?= ,g (Q$;z'I;; "' = 

-X-n&;-41)= 

used the well-known formula (/9/, p.112) for Gauss's function with argument 

equation yields important relations 

c*ri = (X), (k!)_f, Q.+r = 0, k = 0. 1, . . I 15.7) 

(5.6) the formula for Newton's binormal and taking into account relations (5.7), 

If we now substitute expression (5.2) into (5.5) having previously replaced Gauss's 
function in it by its representation in the form of a power series and using Eq.(5.8), we 
obtain the required power representation 

Thus the NSIC required is given by (5.3), (5.4) and (5.91, which can be used to find 
the NSIC for the case of axial symmetry, To do this it is sufficient to put C=O in 
formulas (5.4) and (5.9). As a result we find 
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It is best to use the above formula when b> 1, otherwise we have to apply formula 
9.131 and 9.132 from /5/. In order to demonstrate their use, we will obtain the NSIC for 
the case when b = 0, i.e. for the case when the force P is applied directly to the edge 
z=+o of the crack. In this case Gauss's function in (5.10) should be transformed using 
formula 9.132(2) from /5/, and this will enable us to carry out, after some reduction, the 
passage to the limit as b-to. As a result we obtain 

A',(') = n-*P @a)-"( (8 - 3~) (1 - ,@I. 
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FRACTURE OF A NARROW BRIDGE BETWEEN CRACKS LYING IN THE SAME PLANE* 

S.A. NAZAROV and O.R. POLYAKOVA 

The stress-deformation state of an isotropic elastic space weakened by a 
family of cracks of normal separation is investigated. In some regions 
the crack edges come closer to each other, and form narrow bridges 
(ligaments). An asymptotic form of the solution of the problem is 
constructed under the assumption that the bridge either contracts to a 
contour, or becomes an open arc. Special features of the stresses at 
the tip of the bridge are studied for various forms of the tip. 
Asymptotic formulas obtained are used to produce variational 
formulations of the problems, and the lack of uniqueness of these 
solutions is interpreted as the instability of the process of disruption 
of narrow bridges. Examples are considered. 


